If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-2h-84=0
a = 1; b = -2; c = -84;
Δ = b2-4ac
Δ = -22-4·1·(-84)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{85}}{2*1}=\frac{2-2\sqrt{85}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{85}}{2*1}=\frac{2+2\sqrt{85}}{2} $
| 4^2x-21(4^x)+80=0 | | X^2=100x36 | | 2x+1/2×=450 | | 6h-4=2h-6 | | g÷5678439=647589+679999.6574 | | 7n+4+8(5n+4)=180 | | 3x+11,x=12 | | −50=6a+286a+28 | | .17=25–2x–6 | | 17=25–2x–6 | | 2z=4=10 | | 15/t=7.5 | | (x+20)+(6x-10)+(10x-17)=180 | | (2s+14)+(s+7)+33=180 | | n-1.8=2.4 | | (2t-3)+(2t-13)+(3t)=180 | | x15+x=29 | | (5p-16)+(p+10)+(3p+6)=180 | | (s+21)+(6s-23)+(7s-48)=180 | | (2x)+(8x-38)+(4x-32)=180 | | (x+20)+(x+17)+(7x-4)=180 | | –6+3x=3 | | 20x+180=1000 | | (s+18)+(4s-8)+(4s-4)=180 | | (p-15)+(p-18)+(2p-18)=180 | | (4z-8)+113+31=180 | | (5y)+(y+46)+(y+50)=180 | | 14p+6=9p+34 | | (2y-12)+(y+11)+(y+17)=180 | | (2s-17)+(4s)+41=180 | | 24/x=30/18 | | 5x=3x+1/ |